Profiler Control Documentation

Updated: December 23, 2003

1. Overview

This document describes the Profiler Control tool that can be used to perform profiler analysis of a Progress based application. The Profiler Control tool is designed to simplify the profiling and analysis of the performance data that the Progress run-time executable generates.

1.1 Features

This tool is a complete rewrite of the performance profiling tool that ships with some version of Progress. This tool includes a GUI for simplifying the launching and stopping of procedures. It has the ability to detect whether Progress Dynamics is running and allow the launching of dynamic containers as well as static smart objects and other procedures. It includes all of the same information, but removes much of the complexity of the previous tool by removing the requirement for a database and the timing consuming loading of profile data. In addition to previous execution statics, more information has been added. This tool also includes added functionality that gives the user the ability to perform side-by-side compares and exporting of data to external programs.

1.2 Software Support

This tool is an Unsupported, free software package. This tool will not be supported by Progress Technical support. This tool has not gone through a full QA and may contain bugs or inaccuracies in either the reported data or the behavior of the tool itself.

The Profiler Control viewer requires Version 9.x Progress adm2. It should also work with Version 10.x. The Profiler Control screen does not require the adm2, but it does require Version 9.

2. Profiling

2.1 What is Profiling

A performance profiler is a common and useful tool for a software developer. In brief, a profiler provides a "profile" of a particular execution. A profiler generally provides timing information and call-tree information; with that, an engineer can analyze where their program is spending most of its time and what part of the application is calling what other part of the application.

2.2 How to Profile Your Application

To profile a 4GL application, you run the 4GL application with profiling enabled. As the 4GL Client exits and returns to the operating system, it produces an output file containing a summary of what code was executed and timing data for each line that was executed. We often refer to the data in that output file as representing a "profiling session". Then you use the Profiling Tool to import that summary data (the format is described below); the Profiling Tool does an analysis of the data as part of the import process, and then the profiling session is available for view.

Starting with version 9.0A, there is a PROFILER system handle that may be used to start and stop the profiling, to write the data, to specify the output file, and to control a host of other things associated with profiling.

There are two ways to generate profiling data for an application run: generically using the –profile startup parameter, or specifically using the PROFILER system handle. You should find the details for the PROFILER system handle documented starting in 9.0B in the Language Reference manual. You will also find those details in this document in the Technical Details section. If you don't care about the technical details, but want to be able to turn profiling on and off during an application run, you can use the Profiler Control tool as a ProTool. The Profiler Control is simply a GUI front-end for the PROFILER system handle. Using this is probably the simplest way to control the generation of profiling data for your application.

3. Using the Profiling Tool

The source to the Profiler Control tool is included as part of this package. You may freely modify the source code.

The main program of the tool is called profile.w. To start the program simply run this program. You may wan to compile the code prior to running it. When the program starts you will be prompted to enable the profiler. If the profiler was already enabled using the -profile command line parameter then you will not see this prompt. In either case you can still enable the profiler using the Profiler Control.

The Profiler Control is designed to run with or without Progress Dynamics. If Progress Dynamics is running, then you will be able to launch a Dynamic Object. If Dynamics is not running, then this functionality will be disabled.

3.1 Screen Description

The radio-set a the top of the screen allows the choice of either a program to run or a dynamic object to launch. Choose 'Procedure' or 'Container' and enter the name of a program to run in the Procedure fill-in.

The checkboxes in the top corner present a set of options about how the Profiler will execute.

· Listings: Choose this option to generate listing files for each program that is executed. This option requires that the source code to the program be available and it must compile correctly. If the source code is not present, then listing files will not be generated.

· Coverage: When set to True, the Profiler will begin maintaining executable line and internal procedure information on each external .p procedure that executes. When the analysis data is written to the Profiler output file, the Profiler will output this information (see the section below, Profile Output File Format). This information identifies what lines of code could have been executed for any given procedure; that, together with the Profiler timing data which tells us what lines of code were executed, can be used to do 4GL application code coverage analysis. For example, the profiling session only exercised 30% of the code in a given procedure.

· Tracing: Choose this option to enable trace filters. Trace filters cause the profiler to include or ignore certain procedure names and only generates data for the specified procedures. For example: if the filter value is "*", then it matches all procedures. To get tracing information for all enable_UI procedures, you could set the trace filter to "enable_UI *". To get tracing information for all enable_ui procedures and all executable lines in the procedure hello.p, you could set the filterto"enable_UI *,*hello.p". The pattern matching for tracing filters is case insensitive.

The profiler description is a text fill-in that allows you to distinguish between different profiling sessions. By default the value is filled in with a date and whether the session is a client session or a server session.

The output file name is the name of the file to store profile data into. When the program is finished running, pressing the 'stop' button will export the profile data to the specified file. It is recommended that you change this file name between each run. If you don't, then previously profile saved profile data will be over written.

The Listing Files directory is used to specify which directory to store any code listing files that are generated. By default this is set to the session temporary directory.

The Filter for Tracing field allowed you to specify which procedures to include tracing data for. By default, this field is blank.

3.2 Profiling your Code

To profile your application code, choose either 'Procedure' or 'Container' from the radio-set. If you choose 'procedure' the program is assumed to be a static Progress procedure file. This file does not need to be compiled to run. Choose 'Container' to launch a dynamic object. This 'container' option is only available if Dynamics is running.

Enter the name of the program to run. The Profiler Control can be used to either run, profile, or instantiate the Progress debugger. Choose which option you would like to use from the radio-set on the right. By default, if you said 'yes' to the initial prompt to enable the debugger, then the radio-set will be set to 'Profile'. If you chose 'no', then the profiler will not be enabled and the radio-set will be set to 'Run'. Choose 'Profile', and then press then 'Run” button. This will launch your program.

When you are done running your program choose the 'Stop' button. This will cause the profiler to terminate your program if it is still running, and export the profile session data to the specified output file.

3.3 Profiling with a Dynamics Appserver environment

The Profiler Control has been written with the ability to track profile data for both a client-server session and a client-appserver session for Dynamics. The Profiler Control screen allows for a separate set of inputs for the client side of a session and the appserver side of a session.

When profiling a session, the Profiler Control uses two external programs to determine if it is possible to profile an appserver session. Both of these programs must be copied to the appserver partition and be available for use by the Profile Control

To profile an appserver session, copy the profiler/profgetfile.p and the profiler/profileronoff.p programs that are included in this package to a subdirectory called 'profiler/' in the appservers working directory. If these files are present and can be called, then the Profiler Control will enable the options to profile an appserver session.

Currently only a Dynamics appserver session is supported. The gshAstraAppserver handle is used to determine if an appserver connection is available for profiling. You will need to change the code in order to support your own appserver connection if you are not running with Dynamics.

Profiling in an appserver session is nearly identical to profiling in a client-server session. Enter the name of the procedure, choose 'Profile' from the radio-set, set the description and output files for the client and application server, and then choose 'Run'. When you are done, choose the 'Stop' button to stop profiling and export the profile session data. The primary difference between profiling a client-server session and an appserver session, is that after the profie data is exported, the Profiler Control program will copy the session profile data from the appserver to the local client where it can be accessed for viewing.

4. Viewing Profile Data

After your session profile data data has been generated you can use the Profile Viewer to view the results and perform comparisons of different runs. The profile session data consists of various statistics about how the profiled code performed. In addition to statics, the Profile Viewer includes the ability to display the listing files from the profiled code. Viewing the listing files requires that the 'listing' checkbox was set to true before your program was run.

4.1 Loading Profile data

To load and view profile data, choose the names of the profile data files that you would like to view. This can be done by filling in the name of the client output file or the server output file on the screen or by choosing the “...” button next to each of the fillins. Then choose the “view” button.

When you choose the 'view' button the profile data files will be imported and statistics about the run will be calculated. In order to improve performance and to allow comparisons of data, the profile data is stored in memory when you press the 'view' button. Pressing the 'view' button again will reload the data from the file and create a new cache of information from the session data file. If you do not want to reload the data', set the 'Reload Profile' checkbox to false. This will cause the viewer tool to ignore any output files specified and only display any data that has been previously cached.

If you would like to empty the profile data cache, then set the 'Clear Profiles' checkbox to false, and then press the 'View' button. This will clear the profile data cache and reload any data from the specified client and server output files.

Unlike the previous version of the Profiler tool, this version does not require a database. All profile session data information is stored in temp-tables.

4.2 Profile Data Viewer Description

The Profile Viewer provides statistics about how your program ran. This data is broken down by code block and by individual line of code. Each block of code represents an procedure, an internal procedure, or an internal function.

The code block browser is sorted by % of session so that you can see the most expensive portion of your code first. This information can be used to determine which section of your code executes the most often or takes the longest amount of time to execute compared to other blocks of code. For more detailed information, the Code Line section allows you to see the number of times a particular line executed as well as how long each particular line ran.

If more than one profile session is cached then you can choose which session you would like to view by selecting the name of the session from the combo-box at the top of the screen. When a session is chosen, the date, time, and the total runtime of the session is displayed at the top of the screen.

Code Block:

· Code Block: the name of the internal procedure or function, user interface trigger, and program name

· Calls To: represents the number of times this block of code was executed

· Avg Time: the average length of time in seconds that this block of code took to executed.

· Tot Time: The total amount of time in seconds tha this block of code took to execute.

· %Session: the percentage of the entire session that this block of code used compared to other blocks of code

· Cum Time: represents the entire time that this block of code took to execute in addition to the total time of all blocks of code that this block called.

Code Line:

· Line: The line number within the selected program

· Exec Count: the number of times this line of code executed

· Avg Exec: the average amount of time in seconds that this line of code took to execute

· Tot Time: the total amount of time in seconds that this line of code took to execute

· Cum Time: the total amount of time in seconds that this line of code took to execute as well as any blocks of code that his line called. NOTE: this number will only be different from the Tot Time if the line of code is a run statement or a call to a function

· Score#1: Not used.

· Score#1: Not used.

· Database: Not used.

· Table: Not used

· Filename: Not used

Code Listing:

The editor at the bottom of the Profile Viewer will present the code listing that was generated by the profiler if it is available. Selecting a line of code from the code line browser will cause the code listing editor to reposition and highlight the chosen line of code if it is availble.

Calling Code Block and Called Code Block:

The calling code block and the called code block allow navigation between different sections of the code by double-clicking on the selected row. The calling code block represents the number of times a particular block of code called the selected block of code. The Called Code Block represents any blocks of code that were called and how many times that block of code was called.

4.3 Comparing Profile Data

The Profiler Control includes a tool to compare and export two profile session. This tool can be accessed from the 'compare' button on the Profile Viewer screen.

The compare profile screen allows you to select two different profile session and compare the profile numbers for each block of code side-by-side.

To compare two profile sessions, first load two profile sessions into the profile session cache. You can use both of the output file names on the Profiler Control screen, or select the first file, press 'view', select the second file and press 'view'. Next, from the Profile Viewer screen choose the 'Compare' button at the top of the screen. Select the two profile sessions that you would like to compare. After choosing both sessions, the screen will update with a list that shows the statistics of both sessions in alternating columns. You can sort the columns from largest to smallest using the sort combo box at the top of the screen.

If you would like to export the displayed data, choose File->Export from the menu on this screen and enter the name of the file to export the data to. The displayed data will be exported in a comma delimited format. This data can then be imported into a spreadsheet program or database for further analysis.

5. Profiler Output File Format

This section is included so that you can create your own Profiling Tool, and so that you understand what the given version of the Profiling Tool is reading. Most of you won't care much about the information in this section. The profiler output file has six sections. Each section is terminated with a line with a single dot '.', just like most data read by the 4GL into a Progress database. Depending on the profiling session, some sections may be empty; in that case, they will have at least the line with the single dot '.' terminating the input. I will detail the each of the sections below. The sections are:

1)
A section describing the profiling session;

2)
A section describing the modules (e.g., procedures, functions, triggers) involved in the session;

3)
A section providing procedure call-tree information;

4)
A section detailing timing summaries for each executable line that was a part of the profiling session;

5)
A section describing detailed tracing information; and

6)
A section detailing information necessary for coverage analysis.

7)
A section containing data written using the USER-DATA() method.

5.1 Description Data Section

Format:

IntegerVersion Date "Description" SystemTime "Userid" where IntegerVersion is a version number for the profiling output (in case we choose to change the format at a later date) and identifies the format for the output file; Date is the date in format "mm/dd/yyyy" when the Profiler was enabled; Description will be the value of PROFILER:DESCRIPTION when the file was written; SystemTime is the wall-clock time in HH:MM:SS format; and Userid will be the userid of the current (at the time of the WRITE-DATA() call) DICTDB database or, if there is no database connected, the user's operating system login id. There is only one line of data for this section.

5.2 Module Data Section

Format:

IntegerModuleID "ModuleName" "DebugListingFile" IntegerCRCVal where ModuleName may be the name of an external procedure, an user interface or session database trigger, an internal procedure, or an user-defined function. It looks roughly like the output of PROGRAM-NAME function in Progress. The DebugListingFile will be nil if PROFILER:LISTINGS was False when the module was first registered and it will be nil if the module is not an external procedure name (since they are the only ones that have debug listing files generated for them). The IntegerCRCVal will be 0 for modules that are not external procedures; for modules that are external procedures, this will be the RCODE-INFO:CRC value for the main procedure . The IntegerModuleID is an unique identifier for the module for this profiling session. All following data will be in terms of these identifiers. Here is an example of the first three lines from a profiling session that ran our internal SCC system:

44 "set-ndinfo editdesc.p" "" 0

28 "USER-INTERFACE-TRIGGER chgbug.p" "" 0

1 "/usr/rdl/devdbs6/scc-bug.p" "sccbugrun/00a06814.dbg" 42913

5.3 Call-tree Data Section

Format:

CallerID CallerLineno CalleeID CallCount where module CallerID called Module CalleeID CallCount times from line CallerLineno. All data for this section are Integers. CallerID 0 is used to identify the Session. The "Session" module calls the top-level procedure.

5.4 Line Summary Section

Format:

ModuleID LineNo ExecCount ActualTime CumulativeTime. Where executable line LineNo of module ModuleID was executed ExecCount times and spent ActualTime seconds carrying out the actual execution of the statement and cumulativeTime seconds passed while this statement ran. ActualTime and CumulativeTime are both decimal data with precision 6 (microsecond precision) and all other elements are Integer data. ActualTime and CumulativeTime will be the same for simple statements that don't cause other statements to run. Statements such as the RUN statement or any statement that causes a trigger to fire, will have different values for the ActualTime and CumulativeTime. Note that ActualTime and CumulativeTime are the totals for this statement. If the statement ExecCount is 1, then they are the real times; otherwise, you need to divide ActualTime and CumulativeTime by the ExecCount to get the average time it took to execute the statement. The ActualTime and CumulativeTime are given in seconds and the profiler tries to get microsecond precision.

Here's some example output:

26 291 1 0.001915 0.022753

8 306 66 1.357740 1.387024

50 270 1 0.000473 0.000473

Where LineNo is 0, that refers to the time used to initialize and then later to tear down

the procedure or trigger. This is the overhead of running the

procedure/function/trigger.

Where ModuleID is 0, that is referring to time associated with the profiling session.

There should only be one Line Summary record that references ModuleID 0 and that

record should have a LineNo of 0, an ExecCount of 1, an ActualTime of 0, and the

CumulativeTime should reflect the total time for the profiling session. The

CumulativeTime can be used to compute session percentages; e.g., what percentage of

the session did Module X use.

5.6 Tracing Data Section

Format:

ModuleID LineNo ActualTime StartTime

where executable line LineNo of module ModuleID spent ActualTime seconds carrying out the actual execution of the statement, starting at StartTime. StartTime is relative to the SystemTime (see the Description Data Section above); that is, it is the

number of seconds since SystemTime. StartTime has the same (microsecond) precision as the other timing data. For example,

50 270 0.000160 123.000954

53 116 0.000170 1432.789112

2 14 0.000143 0.132210

5.7 Coverage Data Section

Format:

ModuleID "EntryName" LineCount where ModuleID identifies the main .p procedure module identified in the Module Data Section. EntryName is the name of an internal procedure, user-defined function, or trigger. And LineCount is the number of executable lines in EntryName. If EntryName is nil, then this is identifying the executable line numbers for the main procedure of ModuleID. Each line in this section is followed by LineCount lines of data identifying the executable lines in EntryName.

For example, if ModuleID 10 had an internal procedure defined as follows:

323
PROCEDURE foobar:

324

325
REPEAT I = 1 to 10:

326
 DISPLAY I.

327
END.

328
MESSAGE "All Done.".

329

330
RETURN.

331
END PROCEDURE.

Then the output in the Coverage Data Section would look like:

10 "foobar" 5

325

326

327

328

330

.
? Note the "." data terminator at the end of the executable line data.

A coverage analysis tool may be interested in only the fact that there are 5 executable

lines in foobar, or it may want to know what the actual executable lines are. It can

choose whether it throws the data out.

5.8 User Data Section

Format:

WriteTime "UserData"

where WriteTime is the time at which the USER-DATA() method was executed and

UserData is the val passed to the USER-DATA() method. WriteTime is relative to the

SystemTime (see the Description Data Section above); that is, it is the number of

seconds since SystemTime. WriteTime has the same (microsecond) precision as the

other timing data.

6. If you need Help

If you need help, do not call Progress Technical Support! For help, please contact your Global Professional Services Manager (i.e., Progress Consulting) and employ their services.

